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Instabilities caused by oscillating accelerations 
normal to a viscous fluid-fluid interface 
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(Received 9 September 1987 and in revised form 19 April 1988) 

Two incompressible viscous fluids with different densities meet at a planar interface. 
The fluids are subject to an externally imposed oscillating acceleration directed 
normal to the interface. The resulting basic-state flow is motionless with an internal 
pressure oscillation. We discuss the linear evolution of perturbations to this basic 
state. General viscosities and densities for the two fluids are considered but a 
Boussinesq equal-viscosity approximation is discussed in particular detail. For this 
case we show that the linear evolution of a perturbation to the interface subject to 
an arbitrary oscillating acceleration is governed by a single integro-differential 
equation. We apply a Floquet analysis to the fluid system for the case of sinusoidal 
forcing. Parameter regions of subharmonic, harmonic, and untuned modcs are 
delineated. The critical Stokes-Reynolds number is found as a function of the surface 
tension and the difference in density and viscosity between the two fluids. The most 
unstable perturbation wavelengths are determined. For zero surface tension these 
are found to be short, on the order of a small multiple of the Stokes viscous 
lengthscale. The critical Stokes-Reynolds number and the most unstable pcr- 
turbation wavelengths are found to be insensitive to the degree of density and 
viscosity differences between the two fluids. 

1. Introduction 
The mixing of two viscous fluids by shaking is a common occurrence. This paper 

discusses a model problem as a step towards understanding the initiation of mixing 
caused by low-amplitude oscillations. We investigate the stability of a planar, viscous 
fluid-fluid interface subject to oscillating normal accelerations. 

The treatment of the problem herein idealizes the fluid system as being in an 
infinite domain. The linear evolution of a perturbation to this interface then depends 
on four non-dimensional parameters : the Stokes-Reynolds number, the surface- 
tension parameter, a parameter for the density difference between the two fluids, and 
a parameter for the absolute viscosity difference. To simplify the analysis and results 
the latter two parameters are neglected in much of this paper. Section 4 presents 
numerical evidence that this neglect is usually acceptable. Also, we primarily 
consider the case of zero surface tension. This is because we have a particular interest 
in the very short-wavelength instabilities generated in the zero-surface-tension case. 
These are so small as to be difficult to resolve in Navier-Stokes numerical 
calculations, yet they may have a significant effect on transport through an interface 
and in determining larger scale interface evolution. An additional reason for 
restricting consideration of the non-zero-surface-tension case is that  even weak 
surface tension can often overwhelm the effects of viscosity, making the complexity 
of a viscous analysis superfluous. Surface tension is considered here primarily 
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to demonstrate how the fluid system’s behaviour changes radically with its 
introduction. 

This work was initially motivated by a desire to understand the potential effects 
of oscillating accelerations on space-based materials processing experiments. A 
particular example of such an experiment is crystal growth using counterdiffusion. 
It may be possible for g-jitter (random accelerations) to drive wave formation in the 
sharp interior concentration and density-gradient layers that  can occur with this 
technique. Such wave formation could lead to an increase in crystal growth defects 
(Galster & Nielsen 1984). The problem discussed here, accelerations normal to an 
interface, is one of two model problems relevant to the effects of g-jitter on sharp 
fluid-density gradients. The other problem is g-jitter parallel to the interface. This 
forces a viscous, oscillating Kelvin-Helmholtz flow. This problem is undoubtedly the 
more significant of the two, but it is also considerably more difficult. It is hoped that 
the results presented in this paper will lay some groundwork for the analysis of the 
parallel case. 

The model problem discussed in this paper can be considered an extension and 
generalization of the linear stability problem posed by Faraday resonances (Faraday 
1831). In the classic formulation of this problem, one considers an inviscid fluid with 
a frec surface subject to a stabilizing mean gravity and accelerations normal to the 
surface. This was first successfully investigated analytically by Benjamin & Ursell 
(1954). For the case of sinusoidal accelerations, they showed that the evolution of 
each mode of oscillation of the fluid is determined by Mathieu’s equation: 

-+((S+ecost)$=O, d2$ 
at2 

where $ is the amplitude of the mode and 6 and c are mode-dependent constants. The 
stability bounds of the Mathieu equation (Mclachlan 1947) correspond to the onset 
of wave motion in the fluid. Finite-amplitude behaviour of this system has since been 
investigated by Dodge, Kana & Abramson (1965), Ockendon & Ockendon (1973), 
Henstock & Sani (1974), and Miles (1984). None of these papers considers viscous 
terms, but some work that considers viscous effects for a similar system has been 
recently carried out by Hasegawa (1983) and Hasegawa, Umahara & Atsumi (1984). 
Using highly truncatcd spectral approximations, they considered the stability of 
oscillated thin viscous fluid layers. 

The literature on flows caused or affected by g-jitter goes back to the early sixties. 
Gcbhart (1963), Spradley, Bougeois & Lin (1975), and Kamotani. Prasad & Ostrach 
(1981) discuss the effect of g-jitter on heat transfer and on temperature oscillations 
in fluids. Gebhart concluded that g-jitter generally enhances heat and mass transport 
while Kamotani et al. found that temperature oscillations induced by g-jitter might 
be significant in influencing the dynamics of crystal growth. Related to these papers 
are several papers on the interaction of mechanical vibrations and convective 
instabilities, by, among others, Uonnelly, Reif & Suhl (1962), Gresho & Sani (1970), 
and Burde (1970). Most of the research to date has considered g-jitter-influenced 
flows with only smooth distributions of temperature and/or composition. One 
exception is Spradley et al., which briefly discusses free-surface effects noticed in 
some numerical calculations. 
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FIGURE 1. The fluid system. 

2. Formulation 
The fluid system is shown in figure 1 .  Two incompressible fluids with differing 

densities and viscosities meet a t  an interface centred on x = 0. The denser fluid is to 
the right of the interface. Molecular diffusivity, which for most fluids is very small 
compared to viscosity, is neglected. With this idealization, even with no surface 
tension, an initially sharp fluid-fluid interface remains sharp as it evolves. The 
momentum equations for the fluids are 

where the plus and minus subscripts refer, respectively, to the right and left fluids. 
Ag(wt )  is the imposed oscillating acceleration, with g(t)  having mean-square 
amplitude 1/.\/2, and a dominant frequency of 1/2n. Since we are interested in g- 
jitter we limit g(t)  to having zero mean. The inclusion of a non-zero mean g ( t )  would 
be quite straightforward. 

The equations can be non-dimensionalized and somewhat simplified as follows. 
First, we set p+ -p- = Ap, p+ -p- = Ap, t(p- +p+)  = pa, $(p- +p+) = pa, and p.,/p, = 
v,. Subtracting out Ag(wt)p,x  from both p-  and p+ and then scaling ( 2 )  with the 
Stokes lengthscale (2v,/w)i the timescale l/w, the velocity scale A(Ap/p,)  (i/w), and 
the pressure scale A Ap( va/2w)t, the non-dimensionalized momentum equations for the 
bulk fluids become 

(3)  
au + 

2(1 *@/,)at+ ( 1  * @,)R,(u ,  * VU,) - (1  k0,) V Z U ,  = - vp+ - &ig(t) .  

Here R, is the Stokes-Reynolds number, 

0, = Ap/2p, and 0, = Ap/2p,.  0, can vary from 0 to 1 and 0, can vary from - 1 to 1 .  
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We are interested in the evolution of the interface from some initial perturbation. 
This can be treated as a linear stability problem in which the basic state is motionless 
with an internal pressure oscillation caused by the imposed acceleration. With the 
basic-state interface a t  x = 0, the basic-state pressure is g ( t )  1x1. Linearized 
perturbations to this state obey 

au 
2 ( 1 + 0 , , ) ~ - ( 1 + 0 p l ,  - = --vp*, v . u t  = 0. (4a ,  b )  

at - 

Interfacial boundary conditions a t  x = 0 are that the velocities and stresses be 
continuous. The stress conditions can be expressed in terms of the velocities, 
pressures and the interface position h as 

au 
p ax ~ , , :p+-p-  = 40 --2g(t)h+21' 

T is the non-dimensional surface-tension parameter 

i w  1 F T = 
2 v , A p A '  

where 

u, p and h. Next, the equations allow the Fourier decomposition ( u , p ,  h )  
py(u*, p*, h*). The resulting one-dimensional system of equations is 

is the original dimensional coefficient. 
By application of the continuity equation, (4)-(5)  can be rewritten in terms of just 

cos uz cos 

where the asterisk superscript has been dropped and where y 2  = az++z. The 
interfacial boundary conditions become 

The kinematic equation for h is 

dh 
2 -  = R,u. 

dt 

The conditions a t  00 are that u and p are evanescent. 
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3. The Boussinesq equal-viscosity case 
Adoption of the Boussinesq approximation (Q,, = 0) and neglect of 0, allows a 

considerable simplification of (6)-( 8). (u, p)-eigensolutions are then necessarily of 
(even, odd) symmetry. Thus only the domain x > 0 must be considered. Accordingly, 
we drop the + and - subscripts. The solution for p in x > 0 is - ( g ( t )  + y 2 T )  h( t )  e-Yz 
and the equations for u and h reduce to 

ah 
= - y (g ( t )+y2T)h  e-Yz, 2- = R u *I = 0. ( 9 a ,  b, c )  

at s ’  ax 0 

Formally, the Bousinesq approximation amounts to the limit Ap+O while A A p  
remains constant. Informally, it has the usual meaning : we are neglecting variations 
in density except when it multiplies the imposed acceleration. The solutions to 
(6)-(7) vary smoothly as the Boussinesq limit is approached. 

3.1. Asymptotic results for general forcing 
If the viscous terms in (9a) are neglected, then (9a, b) can be easily combined to form 
an ordinary differential equation for h : 

d2h 
dt2 
-+(iy3RsT++yRsg(t))h = 0. 

If, in addition, g ( t )  = cost, then (10)  becomes Mathieu’s equation, given as ( l ) ,  with 
6 = i y3RsT  and 6 = +yR,. Though its inclusion of R, disguises it,  (10) is basically the 
equation for the inviscid case. A redimensionalization of y and T cancels out the va, 
in the denominator of €2,. Alternatively, the inviscid case can be viewed as 
represented by (10) with the limit of R,+ 00 while y R ,  and y2T remain finite. y goes 
to zero not because the dimensional wavelength is becoming infinitely long but 
because the Stokes lengthscale goes to zero with the viscosity. The correct 
lengthscale for the inviscid case is A / W 2 .  

With the inclusion of the viscous terms in (9a), (10)  becomes an integro-differential 
equation. To derive this, set 

Then, from (9a, c ) ,  u ~ , ~  obeys 

The solution to (11) for initial conditions set a t  t = 0 (see Carslaw & Jaeger 1959, 
pp. 53, 75-76) is 

Since we arc interested in the long-time stability of the system, the first integral, 
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which fadcs cxponentially to zero, can be neglected and the limits on the second can 
bc changed from 0 to t to -CO to t. Since 

we obtain 

Neglect of the integral in (13) is often acceptable when y is small enough but y does 
not necessarily have to be 4 1 .  For example, the rescaling t = Rgft', y = Ri y' factors 
out R, and is useful for the case of large R, and T = 0. Then g(t ' )  is slowly varying 
and a quasi-static analysis shows that the integral can be neglected, to a first 
approximation, when y3  4 Rs. A similar approach can be used when R,T is large. 
Then the integral can be neglected, for many purposes, when y 6 R,T. 

A good way to look a t  the effects of the integral in (13) is to consider the difference 
in solution behaviour between (10) and (13) as y becomes large. As y increases, 
solutions to (10) with T = 0 become more and more unstable; in fact, growth rates 
increase without bound as y + CO. For T =i= 0 solutions to (10) become neutrally stable 
and rapidly oscillatory. In  (13), the integral acts as a delayed approximate 
cancellation of the multiplier of h on the left-hand side of (13). This cancellation effect 
corresponds to the viscous diffusion of any evolved momentum away from the 
intcrface. As y increases this cancellation is accomplished increasingly quickly and 
completely. The result is that  h for large y always becomes stable. With T = 0, h 
decays very slowly while with T + 0 its rate of decay increases linearly with y. 

In order to demonstrate the above we simplify (13) as follows. For large y ,  the 
integrand in (1 3) can be expressed in terms of an asymptotic series in inverse powers 
of y.  Taking advantage of the fact that the integrand for large y is significant only 
near 7 = t ,  the integrand quantity 

f ( 7 )  = iyR,(g(.r) + Y W  4 7 )  

can be adequately represented, provided that g(7) and h(7) are sufficiently slowly 
varying, by a truncated Taylor series about t. Then the right-hand side of (13) can 
be integrated term by term to yield 

where N is the number of derivatives of the Taylor series retained in the truncation. 
If N is taken to be zero, then (13) becomes simply d2h/dt2 = 0, demonstrating the 
cancellation effect of the integral. For general N ,  (13) becomes, after one integration, 

Note that the right-hand side of (14) is equal, to within the accuracy of the present 
approximation, to ;R,u(t, x = 0). The constant of integration has been set equal to 
zero in (14) because a time-independent component of u is inconsistent with solutions 
for u of the homogenous part of (9a ,  c ) .  
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We now consider the truncation N = 2. For this case, after some manipulation, 

Two significant conclusions can be drawn from (15). First, as y becomes large h 
oscillates with the same dominant frequency as g ;  there is no subharmonic, higher 
harmonic, or untuned behaviour. Secondly, h is stable. The average rate of decay of 
h is equal to the average of r ( t ) .  This average is also an approximation to  the Floquet 
exponent for the approximated solution. The average of r(t) is 

I (g ( t ’ )  + y2T) 
__ 
r(t) = -- dt’. 

27c 

(Thc dg/dt term in (15) integratcs out.) Equation (16) can be further simplified if 
y 3  9 Rs and y 9 R,T. Then 

Since the mean-square amplitude of g(t) has been scaled to l / d 2  

Equation (18) gives a good indication of the very different behaviour of the fluid 
system with and without T = 0. 

3.2. Trigonometric series technique for sinusoidal forcing 

When g( t )  equals cost the problem of determining the stability of h can be reduced 
to finding the roots of a tridiagonal determinant. Following Floquet theory (Stoker 
19501, we set 

+m =m 

u = C u,(x) eAt eint, h = C h, elt eint. 
-m -m 

h is the Floquet exponent. Substituting the summations into (9) gives 

(y2  + 2 ( h  + in)) u, = b(h,-, + 2y2Th, + h,,,) e-Ys, -- 
dx2 

2(h +in) h, = Rsun, = 0. 
dx 0 

The solution for u, is 

5, = y2 + 2(h + in) 
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FIGURE 2 .  The approximate neutral curve (derived from ( 2 2 ) )  for the subharmonic-dominated 
instability for ( a )  T = 0, ( b )  T = 10. For comparison, the exact curve (dashed) is also shown. 0, and 
0,, equal zero. 

This can be substituted into (19b)  to give 

( (h+in)2+b3R,T(1- i ) )hn  =-8 y R s (  1-- i) (h  ,-1+h,+& 

A solution of (20) exists only when the infinite tridiagonal determinant formed of the 
coefficients of the h, is equal to zero. Approximate roots of this determinant can be 
found via continued fraction methods, as detailed by Arscott (1964). The searched- 
for root can be a specific value of any of the parameters A ,  R,, y ,  T ,  E ,  or &. Each can 
thus be found as a function of the other parameters. If root values of R,, T, 6 ,  or 8 
are sought then standard eigenvalue routines can be applied to truncated versions of 
(20) as an alternative to the continued fraction approach. 

3.3. Approximate analytical solutions for sinusoidal forcing 

In  this section we discuss approximate analytical solutions for (20) for two cases, (i) 
large y with 5” = 0 and (ii) small R,. 

We consider first the case of large y with T = 0. By large y ,  we mean both that 
y % 1 and y2 9 R,. Then, as y increases the equations in (20), except for the equation 
for h,, become increasingly diagonally dominant. Concomitantly, the solution for h 
becomes increasingly dominated by its lowest frequencies. For very large y ,  an 
accurate solution can be found for h from (20) truncated a t  (nJ = 1. The equation 
determining h is then 

The left and right sides of (21) can balance only when h is small and when h is close to 
- y2 .  In  the first case, (1 - y / G )  can be approximated by h /y2 ,  ( A  ki)2 by - 1, and 



Instabilities caused by oscillating accelerations at a ,fEuid-Jluid interface 503 

(l-y/(<*l)i) by (&i/y2)+t(1/y4)  Then, as derived in $3.1, h x-&$/y4. In  the 
second case, substitution of h = - ty2  into (21) in all terms but (1  -y/Q,), into which 
h = --b2 + A, is substituted, gives 

Y Y  

from which h x -ty2+&Ri/ys.  This quickly decaying mode cannot be found by the 
asymptotics of 3 3.1. 

The possibility of subharmonic solutions (the imaginary part of h equaling 4) as 
y --f 00 can be investigated separately by truncating (20) to the equations for n = - 1 
and n = 0. It can be quickly seen, however, that no solutions for large y are then 
possible. The same conclusion holds for untuned modes. 

We now turn to the case of low Stokes-Reynolds number. For this case the 
subharmonic dominated mode is the ‘most dangerous’. Truncating (20) to n = - 1 
and n = 0 and setting the real part of h to zero, we obtain the following quadratic 
equation for the subharmonic-dominated-mode neutral curve : 

( y 6 T 2 - i y 2 ) ~ ~ * R i - y 3 T ( ~ + ~ * )  R s + l  = 0, (22) 

where c = 1 - y / ( y 2  + i); and c* is the complex conjugate of c. For T = 0 (22) simplifies 
to 2 1 R h = l i ) = -  

Y 
s( 2 

ll-ml. 

The approximate neutral curves for T = 0 and 10 are shown in fi ure 2. It can be 
shown that the maximum unstable wavenumber for T % 1 is O(T--g). Equation (22) 
becomes increasingly accurate as T increases because the relevant y ,  and thus the 
coupling coefficient yR,  in (20), becomes smaller. 

A surprising effect of surface tension is that it reduces the critical Stokes-Reynolds 
number. This reduction is due to the lessening of the importance of viscous damping 
effects as resonant wavelengths become longer and longer with increasing T .  The 
critical number from (22) is about 4.98 for T = 0, 3.28 for T = 1, 2.28 for T = 10, and 
1.95 for T = 40. As T increases the neutral curve becomes more and more cusp-like 
and ye, the critical wavenumber, and the y associated with the double root of (22) 
become more and more coincident. An approximation to yc and the critical 
Stokes-Reynolds number (R& can be derived using that fact. We obtain y, x 
(2T2)-i, (R,), x 4 2  + 2y,. I n  obtaining these approximations, leading-order inviscid 
terms cancel out. The approach to the limit is governed by the smaller, viscous- 
related terms y / ( y  2 + i  - ‘ ) l  3 in . c and c*. 

8 

3.4. Numerical results 

Equation (20) was solved using both continued-fraction and eigenvalue methods. For 
the latter (20) was truncated a t  In( = 24. The eigenvalue approach was used primarily 
just to check on some of the continued-fraction results. All numerical results 
presented here were calculated via the continued-fraction algorithm. 

We consider first the case of zero surface tension. Figure 3 shows the computed 
neutral curves for T = 0 in the ( y ,  R,)-plane. The lowest banana-shaped curve outlines 
the subharmonic-dominated instability, the next the harmonic-dominated insta- 
bility, the next the $-dominated instability, and so on. Each instability mode is 
separated from the others by a very thin region of stability. The critical 
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FIGURE 3. Keutral curves in the ( y ,  RJ-plane. Z’, 0,, and O,, equal zero. 

FIGURE 4. Preferred wavenumbers as a function of R,. (a) shows the  fastest growing 
wavenumbers; ( b )  shows their rate of growth (the real part of A ) .  T ,  0,, and 0,, equal zero. 
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FIGURE 5. The region (shaded) in the ( y ,  R,)-plane with untuned eigenmodes. T, O,, and O,, 
equal zero. 

Stokes-Reynolds number was found to be 4.7681 a t  a y of 0.758.The upturnings and 
high-wavenumber cutoff of the neutral curves in figure 3 are due to viscous effects. 
The inviscid neutral curves calculable from (10) are hyperbolas that asymptote to 
both the R, and y axes. A quantitative match in position of the viscous and inviscid 
neutral curves is found in the rather narrow region y < 0.05Rg. 

Figure 4 ( a )  graphs the fastest growing wavenumber as a function of R,. The line 
breaks whenever there is a shift to a new, higher dominant frequency. For example, 
the subharmonic-dominated mode is the fastest growing up to R, z 31. The 
harmonic-dominated mode is then the fastest growing up to Rs z 67. Figure 4(b) 
shows the growth rates of the fastest growing wavenumbers. The increase in 
preferred dominant frequency and maximum growth rate with R, is proportional to 
4. The preferred wavenumber increases as Rg. These dependencies are in agreement 
with quasi-static results outlined in 33.2. 

The general nature of the eigenfunction solutions is also of some interest. First, it 
was found that, just as for the inviscid case, there are for any given ( y ,  R,)-pair only 
two eigenfunction solutions, of which at  most one is unstable. Both eigenfunctions 
are always of the same type, that is they are both either of subharmonic type, 
harmonic type, or untuned. The untuned modes are always damped. For the most 
part these are confined to a region near the y = 0 axis, as shown by figure 5. They 
were also found in some very narrow, virtually one-dimensional, regions that 
separate the subharmonics from the harmonics. Figure 6 highlights the regions in the 
( y ,  R,)-plane that have eigenfunctions of harmonic type. Away from the R, axis, for 
R, < O(y3) ,  the plane is covered by alternating bands of subharmonic-type and 
harmonic-type modes. 

We now consider the effects of surface tension. Figure 7 shows the most unstable 
wavenumbers as a function of Stokes-Reynolds number for T equal to 1 and 10. For 
T equal to 10 the wavelengths of maximum instability are already much longer 
than for zero surface tension. Also, higher frequency instabilities are inhibited. By 
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FIGURE 6. Regions (shaded) in the ( y .  &-plane that  have harmonic-type modes. Except for the 
corner near y = 0 and R, = 0 the unshaded regions have suhharmonic-tyr)e-mode solutions. T. 
O,, and 0, equal zero. 

, 
y 0.5 l ' O 1  

0 100 200 300 400 

Rs 

FICURE 7 .  Most unstable wavenumbers as a function of R, for (a )  T = 1 and ( b )  7' = 10. 0, and 
0,, equal zero. 
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Y 

FIGURE 8. Keutral curws and regions of untuned modes (the shaded regions) for T = 1 .  @,> and 
O,< equal zero. 

T = 100 unstable wavenumbers are limited to being less than 0.15. With these 
longer wavelengths viscous effects are of comparatively little importance. Inviscid 
and viscous neutral curves are nearly coincident for T 2 10 except that  the viscous 
curves exhibit a cusp-like cutoff as discussed in $3 .3  while the inviscid instability 
regions continue (as ever-thinning filaments) as y+ co. Another effect of even very 
low surface tension is to make untuned modes predominant in stable regions for all 
but very largc y .  To illustrate this, the neutral curves and the regions of untuned 
modes for T = 1 are shown in figure 8. Perceptibly wide regions of subharmonic- and 
harmonic-type modes extend only to about y equal to 1.4. As discussed in $3.1, the 
harmonic mode becomes important again for very large y. For example, for '1' = 1 
and R, = 5 the transition from untuned modes to  the harmonic mode occurs a t  
y = 7.6. 

4. General 0,, and 0,, 

infinite tridiagonal matrix in the same fashion as was done in 53 2 .  Thc result is 
We now return to the full system of equations (6)-(8). These can be reduced to an 

( A  +in)' h, = -+ylZ,- b, (hn-l + h,,,), (23 )  
a, 

(25a ,  b )  

li F L U  I!lH 
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0 05, for ( b )  0.01. 

Spot checks were made on the sensitivity of the ratio an/b,  to variations in 0, and 
Oj,. In general, it was found to be fairly insensitive, For example, for 7% = 1, y = 1.24 
and h = 0, over the range - 1 < 0,, < 1,0 < 0, < 1, the magnitude of a,/bn was 
found to vary from 1.83 to 2.20 while its phase angle (in rad) ranged from -0.994 
to -0.855. For n = 0, y = 0.54, and h = 0.5i the magnitude varies from 1.16 to 1.52 
and the phase from -0.587 to -0.503. The extent of variation decreases with 
increasing n and, in general, with increasing y .  Most of the variation of a J b n  occurs 
near 0 ,  = 

Mie have investigated (23) primarily to see how key quantities such as the critical 
Stokes-Reynolds number and the most unstable wavelengths vary with 0,, and Oj,.  
Figure 9 shows the critical Stokes-Reynolds number and the critical wavcnumbcr 
as a function of 0, and O,, for T = 0. As could be expected from the moderate 
sensitivity of an/bs ,  both critical quantities arc fairly insensitive to variations in 
0, and 0, except near 0,, = f 1. Figure 10 shows similar results for 7’ = 10. The 
sensitivity of yc to 0, and 0, is reduced substantially as T increases from 0 to 10. 
as 7’ increases from 0 to 10. 

Figure 11 shows the wavenumber and growth rate of thc most unstable wave as 
a function of O,, and 0, for R, = 190 and T = 0. The most unstable mode is of 
subharmonic type except near 0, = - 1 where a harmonic-type mode with y z 1.35 
is dominant. This jump in mode and corresponding discontinuity in preferred 

1. Its derivative with respect to O,, is singular there. 
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FIGURE 10. ( a )  (I?& and (6) y, as functions of O,, and O,, for T = 10. Contour intervals for 
( a )  are 0.05, for (b )  0.005. 

wavenumber has already been seen in figure 4 ( a ) .  Except for that  discontinuity the 
preferred wavelength is only weakly sensitive to 0, and 0,. The growth rate of the 
most unstable wave is also only weakly sensitive. Preferred wavenumbers and 
maximum growth rates as a function of 0, and 0, have been calculated for somc 
Stokes-Reynolds numbers ranging from 20 to 300. All the results show the 
wavenumber and growth rate having a similar pattern of variation and a similar 
weak sensitivity to 0, and O,,. 

5. Summary and conclusions 
We have shown that oscillating accelerations normal to a fluid density interface 

with no surface t,ension can generate very short-wavelength instabilities. With no 
surface tension, the most unstable wavenumbers and the unstable wavenumber 
cutoff are both O ( @ ) .  Viscous effects are si nificant for all but very small 
wavenumbers. They become dominant for y 9 R$ and the fluid system then gives a 
weakly damped harmonic response to forcing. This is in contrast to the inviscid case 
in which both the growth rate and frequency of the response increase without bound 
as y + 00. Viscosity enforces a critical Stokes-Reynolds number that is a function of 
0, and 0, and has a maximum value of about 4.77 .  

The fluid system’s behaviour changes quite significantly with the introduction of 
surface tension. In most respects, viscous effects can be neglected for T 2 10. An 

B 

17-2 
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FIGURE 1 1 .  ( a )  The most unstable wavenumbers and ( b )  their growth rates for R, = 190 as a 
function of 0, and 0,'. T equals zero The most unstable mode is of subharmonic type except at the 
O,i = - 1 edge of the plot. In (a )  contours are shown only for the subharmonic-type mode. 

important exception is that surface tension and viscosity combine together to  limit 
unstable wavenumbers to  O(T'-;). This cutoff actually involves a vcry slight change in 
growth rates from the inviscid case, since the inviscid regions of instability above the 
cutoff are very narrow and only very weakly unstable. Predicted wavelengths for 
T 3 10 are considerably longer than with no surface tension. In  practice, container 
size, neglected in this analysis, may have significant effects on these waves. The 
critical Stokes-Reynolds number decreases with increasing T ,  asymptoting to 2/2. 
This decrease is due to the lessened effect of viscosity as the increasing surface tension 
excites resonant instabilities a t  lower and lower wavenumbers. 

Our results have indicated that important properties such as the critical 
Stokes-Reynolds number and the most unstable wavelengths are fairly insensitive to 
0, and 0,. The Boussinesq equal-viscosity approximation discussed in this paper 
thus appears to be adequate for understanding and predicting most of the instability 
phenomena of this fluid system. 
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